Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Vis Exp ; (205)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526087

RESUMO

Cell-free expression (CFE) systems are powerful tools in synthetic biology that allow biomimicry of cellular functions like biosensing and energy regeneration in synthetic cells. Reconstruction of a wide range of cellular processes, however, requires successful reconstitution of membrane proteins into the membrane of synthetic cells. While the expression of soluble proteins is usually successful in common CFE systems, the reconstitution of membrane proteins in lipid bilayers of synthetic cells has proven to be challenging. Here, a method for reconstitution of a model membrane protein, bacterial glutamate receptor (GluR0), in giant unilamellar vesicles (GUVs) as model synthetic cells based on encapsulation and incubation of the CFE reaction inside synthetic cells is demonstrated. Utilizing this platform, the effect of substituting the N-terminal signal peptide of GluR0 with proteorhodopsin signal peptide on successful cotranslational translocation of GluR0 into membranes of hybrid GUVs is demonstrated. This method provides a robust procedure that will allow cell-free reconstitution of various membrane proteins in synthetic cells.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Lipossomas Unilamelares/metabolismo , Membranas/metabolismo , Sinais Direcionadores de Proteínas
2.
Methods Mol Biol ; 2774: 43-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441757

RESUMO

Intercellular membrane-membrane interfaces are compartments with specialized functions and unique biophysical properties that are essential in numerous cellular processes including cell signaling, development, and immunity. Using synthetic biology to engineer or to create novel cellular functions in the intercellular regions has led to an increasing need for a platform that allows generation of functionalized intercellular membrane-membrane interfaces. Here, we present a synthetic biology platform to engineer functional membrane-membrane interfaces using a pair of dimerizing proteins in both cell-free and cellular environments. We envisage this platform to be a helpful tool for synthetic biologists who wish to engineer novel intercellular signaling and communication systems.


Assuntos
Transdução de Sinais , Biologia Sintética , Animais , Membranas , Biofísica , Dimerização , Mamíferos
3.
bioRxiv ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38260570

RESUMO

Cell signaling through direct physical cell-cell contacts plays vital roles in biology during development, angiogenesis, and immune response. Intercellular communication mechanisms between synthetic cells constructed from the bottom up are majorly reliant on diffusible chemical signals, thus limiting the range of responses in receiver cells. Engineering contact-dependent signaling between synthetic cells promises to unlock more complicated signaling schemes with different types of responses. Here, we design and demonstrate a light-activated contact-dependent communication tool for synthetic cells. We utilize a split bioluminescent protein to limit signal generation exclusively to contact interfaces of synthetic cells, driving the recruitment of a photoswitchable protein in receiver cells, akin to juxtacrine signaling in living cells. Our modular design not only demonstrates contact-dependent communication between synthetic cells but also provides a platform for engineering orthogonal contact-dependent signaling mechanisms.

4.
Angew Chem Int Ed Engl ; 62(41): e202308509, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37607024

RESUMO

Stimuli-responsive hydrogels are intriguing biomimetic materials. Previous efforts to develop mechano-responsive hydrogels have mostly relied on chemical modifications of the hydrogel structures. Here, we present a simple, generalizable strategy that confers mechano-responsive behavior on hydrogels. Our approach involves embedding hybrid vesicles, composed of phospholipids and amphiphilic block copolymers, within the hydrogel matrix to act as signal transducers. Under mechanical stress, these vesicles undergo deformation and rupture, releasing encapsulated compounds that can control the hydrogel network. To demonstrate this concept, we embedded vesicles containing ethylene glycol tetraacetic acid (EGTA), a calcium chelator, into a calcium-crosslinked alginate hydrogel. When compressed, the released EGTA sequesters calcium ions and degrades the hydrogel. This study provides a novel method for engineering mechano-responsive hydrogels that may be useful in various biomedical applications.

5.
Chem Commun (Camb) ; 59(57): 8806-8809, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37365952

RESUMO

In cells, membrane fusion is mediated by SNARE proteins, whose activities are calcium-dependent. While several non-native membrane fusion mechanisms have been demonstrated, few can respond to external stimuli. Here, we develop a calcium-triggered DNA-mediated membrane fusion strategy where fusion is regulated using surface-bound PEG chains that are cleavable by the calcium-activated protease calpain-1.


Assuntos
Células Artificiais , Fusão de Membrana , Cálcio/metabolismo , Proteínas SNARE/metabolismo
6.
bioRxiv ; 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205334

RESUMO

In cells, membrane fusion is mediated by SNARE proteins, whose activities are calcium-dependent. While several non-native membrane fusion mechanisms have been demonstrated, few can respond to external stimuli. Here, we develop a calcium-triggered DNA-mediated membrane fusion strategy where fusion is regulated using surface-bound PEG chains that are cleavable by the calcium-activated protease calpain-1.

7.
Small ; 19(13): e2202104, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35618485

RESUMO

Engineering synthetic interfaces between membranes has potential applications in designing non-native cellular communication pathways and creating synthetic tissues. Here, InterSpy is introduced as a synthetic biology tool consisting of a heterodimeric protein engineered to form and maintain membrane-membrane interfaces between apposing synthetic as well as cell membranes through the SpyTag/SpyCatcher interaction. The inclusion of split fluorescent protein fragments in InterSpy allows tracking of the formation of a membrane-membrane interface and reconstitution of functional fluorescent protein in the space between apposing membranes. First, InterSpy is demonstrated by testing split protein designs using a mammalian cell-free expression (CFE) system. By utilizing co-translational helix insertion, cell-free synthesized InterSpy fragments are incorporated into the membrane of liposomes and supported lipid bilayers with the desired topology. Functional reconstitution of split fluorescent protein between the membranes is strictly dependent on SpyTag/SpyCatcher. Finally, InterSpy is demonstrated in mammalian cells by detecting fluorescence reconstitution of split protein at the membrane-membrane interface between two cells each expressing a component of InterSpy. InterSpy demonstrates the power of CFE systems in the functional reconstitution of synthetic membrane interfaces via proximity-inducing proteins. This technology may also prove useful where cell-cell contacts and communication are recreated in a controlled manner using minimal components.


Assuntos
Bicamadas Lipídicas , Lipossomos , Animais , Membrana Celular , Membranas , Processamento de Proteína Pós-Traducional , Corantes , Mamíferos
8.
Biochemistry ; 61(14): 1495-1507, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35737522

RESUMO

Understanding the structure and structure-function relationships of membrane proteins is a fundamental problem in biomedical research. Given the difficulties inherent to performing mechanistic biochemical and biophysical studies of membrane proteins in vitro, we previously developed a facile HeLa cell-based cell-free expression (CFE) system that enables the efficient reconstitution of full-length (FL) functional inner nuclear membrane Sad1/UNC-84 (SUN) proteins (i.e., SUN1 and SUN2) in supported lipid bilayers. Here, we provide evidence that suggests that the reconstitution of CFE-synthesized FL membrane proteins in supported lipid bilayers occurs primarily through the fusion of endoplasmic reticulum-derived microsomes present within our CFE reactions with our supported lipid bilayers. In addition, we demonstrate the ease with which our synthetic biology platform can be used to investigate the impact of the chemical environment on the ability of CFE-synthesized FL SUN proteins reconstituted in supported lipid bilayers to interact with the luminal domain of the KASH protein nesprin-2. Moreover, we use our platform to study the molecular requirements for the homo- and heterotypic interactions between SUN1 and SUN2. Finally, we show that our platform can be used to simultaneously reconstitute three different CFE-synthesized FL membrane proteins in a single supported lipid bilayer. Overall, these results establish our HeLa cell-based CFE and supported lipid bilayer reconstitution platform as a powerful tool for performing mechanistic dissections of the oligomerization and function of FL membrane proteins in vitro. While our platform is not a substitute for cell-based studies, it does provide important mechanistic insights into the biology of difficult-to-study membrane proteins.


Assuntos
Bicamadas Lipídicas , Membrana Nuclear , Animais , Células HeLa , Humanos , Bicamadas Lipídicas/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/química , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo
9.
iScience ; 25(5): 104236, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35521522

RESUMO

Cell shape changes from locomotion to cytokinesis are, to a large extent, driven by myosin-driven remodeling of cortical actin patterns. Passive crosslinkers such as α-actinin and fascin as well as actin nucleator Arp2/3 complex largely determine actin network architecture and, consequently, membrane shape changes. Here we reconstitute actomyosin networks inside cell-sized lipid bilayer vesicles and show that depending on vesicle size and concentrations of α-actinin and fascin actomyosin networks assemble into ring and aster-like patterns. Anchoring actin to the membrane does not change actin network architecture yet exerts forces and deforms the membrane when assembled in the form of a contractile ring. In the presence of α-actinin and fascin, an Arp2/3 complex-mediated actomyosin cortex is shown to assemble a ring-like pattern at the equatorial cortex followed by myosin-driven clustering and consequently blebbing. An active gel theory unifies a model for the observed membrane shape changes induced by the contractile cortex.

10.
Methods Mol Biol ; 2433: 105-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985740

RESUMO

Membrane proteins are essential components in cell membranes and enable cells to communicate with their outside environment and to carry out intracellular signaling. Functional reconstitution of complex membrane proteins using cell-free expression (CFE) systems has been proved to be challenging mainly due to the lack of necessary machinery for proper folding and translocation of nascent membrane proteins and their delivery to the supplied synthetic bilayers. Here, we provide protocols for detergent-free, cell-free reconstitution of functional membrane proteins using HeLa-based CFE system and outline assays for studying their membrane insertion, topology, and their orientation upon incorporation into the supported lipid bilayers or bilayers of giant unilamellar vesicles as well as methods to isolate functional translocated cell-free produced membrane proteins.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Animais , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Lipossomas Unilamelares/metabolismo
11.
Membranes (Basel) ; 11(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940413

RESUMO

In the pursuit of understanding life, model membranes made of phospholipids were envisaged decades ago as a platform for the bottom-up study of biological processes. Micron-sized lipid vesicles have gained great acceptance as their bilayer membrane resembles the natural cell membrane. Important biological events involving membranes, such as membrane protein insertion, membrane fusion, and intercellular communication, will be highlighted in this review with recent research updates. We will first review different lipid bilayer platforms used for incorporation of integral membrane proteins and challenges associated with their functional reconstitution. We next discuss different methods for reconstitution of membrane fusion and compare their fusion efficiency. Lastly, we will highlight the importance and challenges of intercellular communication between synthetic cells and synthetic cells-to-natural cells. We will summarize the review by highlighting the challenges and opportunities associated with studying membrane-membrane interactions and possible future research directions.

12.
Commun Biol ; 4(1): 1136, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584211

RESUMO

The proteins that make up the actin cytoskeleton can self-assemble into a variety of structures. In vitro experiments and coarse-grained simulations have shown that the actin crosslinking proteins α-actinin and fascin segregate into distinct domains in single actin bundles with a molecular size-dependent competition-based mechanism. Here, by encapsulating actin, α-actinin, and fascin in giant unilamellar vesicles (GUVs), we show that physical confinement can cause these proteins to form much more complex structures, including rings and asters at GUV peripheries and centers; the prevalence of different structures depends on GUV size. Strikingly, we found that α-actinin and fascin self-sort into separate domains in the aster structures with actin bundles whose apparent stiffness depends on the ratio of the relative concentrations of α-actinin and fascin. The observed boundary-imposed effect on protein sorting may be a general mechanism for creating emergent structures in biopolymer networks with multiple crosslinkers.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Proteínas de Transporte/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-33219745

RESUMO

Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Assuntos
Células Artificiais , Nanoestruturas , Biologia Sintética , Membrana Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...